

## HDY-003-1163003

Seat No. \_\_\_\_\_

## M. Sc. (Mathematics) (Sem. III) (CBCS) Examination November / December - 2017

3003: Number Theory - I

| (Old & New Course)  Faculty Code: 003  Subject Code: 1163003 |                                                                                                                                                          |    |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                              |                                                                                                                                                          |    |
| Instruct                                                     | tions: (1) There are five questions. (2) All questions are compulsory. (3) Each question carries 14 marks. (4) Figures to the right indicate full marks. |    |
| <ul><li>1 Fill</li><li>(i)</li><li>(ii)</li></ul>            | If $p$ is a prime number and $n$ is a positive integer then the number of positive divisors of $p^n$ is                                                  | 14 |
| (iii)                                                        | If <i>p</i> is a prime of the form then $x^2 + 1 \equiv 0 \pmod{p}$ has no solutions.                                                                    |    |

- (iv) If p is a prime number and n a positive integer then the number of positive integers relatively prime to  $p^n =$ \_\_\_\_\_
- If  $n = 1001 \times 59$  then  $\emptyset(n) =$
- (vi) If p is a prime number and p does not divide a then  $a^{p-1} \equiv 1 \pmod{p}$ . This theorem is called \_\_\_\_\_ theorem.
- (vii) If m divides ab then  $\frac{m}{(a, m)}$  divides \_\_\_\_\_\_

- 2 Attempt any two:
  - (i) Suppose  $p_1, p_2, \dots, p_k$  are the first k primes then prove that  $p_1, p_2, \dots, p_k + 1$  is a prime number and hence deduce that there infinitely many primes.

7

6

7

7

- (ii) State and prove Division Algorithm. 7
- (iii) State and prove Wilson's theorem. 7
- 3 All are compulsory:
  - (i) State and prove Hensel's Lemma.
  - (ii) Find the smallest positive integer x such that the remainder is 10 when it is divided by 11, the remainder is 12 when it divided by 13 and the remainder is 6 when it is divided by 7.
  - (iii) Suppose (a, m) = 1. Prove that there is a unique integer x in the complete residue system (mod m) such that  $ax \equiv 1 \pmod{m}$ .

OR

- 3 All are compulsory:
  - (i) Suppose f(x) is a polynomial with integer coefficients, p is a prime number and  $f(x) \equiv 0 \pmod{p}$  has degree n. Prove that  $f(x) \equiv 0 \pmod{p}$  has at m solutions in any complete residue system (mod p).
  - (ii) First find the solutions of  $f(x) \equiv 0 \pmod{3}$ ,  $f(x) \equiv 0 \pmod{5}$ ,  $f(x) \equiv 0 \pmod{7}$  and use them to find all solutions of  $f(x) \equiv 0 \pmod{105}$ . Here  $f(x) = x^2 1$ .
- 4 Attempt any two:
  - (i) Determine which of the following have primitive 7 roots and if an integer has a primitive root then find atleast two primitive roots: 5, 5<sup>2</sup>, 82, 12 and 35.

- (ii) If  $\alpha \ge 3$  then prove that the set  $\left\{5, 5^2, 5^3, \dots, 5^{2\alpha-2}\right\} \cup \left\{-5, -5^2, -5^3, \dots, -5^{2^{\alpha-2}}\right\} \text{ is a}$  reduced residue system  $\left(\text{mod } 2^{\alpha}\right)$ .
- (iii) Suppose f is a multiplicative function then prove that 7 the function F defined by  $F(n) = \sum_{d/n} f(d)$  is a multiplicative function.
- 5 Do as directed: (Each carries 2 marks) 14
  - (i) Write the statement of mobius inversion formula.
  - (ii) Find the value of  $\emptyset(101)$  using mobius inversion formula.
  - (iii) Find the highest power of 31 which divides 47321!
  - (iv) Find the number of positive divisors of 2016.
  - (v) Find the values of w(n) for  $n = 49, 55, 101 \times 83, 105$ .
  - (vi) Give an example of a multiplicative function which is not totally multiplicative.
  - (vii) Find  $\sigma(n)$  for n = 150, 307.

7